A Comparison of Deaf and Hearing Children’s Reading Comprehension Profiles

Fiona E. Kyle and Kate Cain

Purpose: Although deaf children typically exhibit severe delays in reading achievement, there is a paucity of research looking at their text-level comprehension skills. We present a comparison of deaf and normally hearing readers’ profiles on a commonly used reading comprehension assessment: the Neale Analysis of Reading Ability II. **Methods:** Comprehension questions were coded into 3 types: literal questions; local cohesion questions; and global coherence questions. Deaf children were matched to 3 groups of hearing children: chronological age-matched controls; reading-age-matched controls; and a group of poor comprehenders. **Results:** Deaf children had significantly weaker reading comprehension skills than both chronological age- and reading-age-matched controls, but their skills were commensurate with poor comprehenders. All groups found it easier to make inferences to establish local cohesion than those required to establish global coherence. **Discussion/Conclusions:** These results suggest that deaf children’s reading comprehension profiles are remarkably similar to those of poor comprehenders. These findings are discussed in light of the potential differences in underlying causes of reading difficulties in these 2 groups. **Key words:** comprehension, deafness, inference making, language, literacy, reading

The ultimate goal of reading is to understand the meaning conveyed in the text. Large-scale studies into the reading achievements of deaf children report huge delays between their comprehension abilities and those of their hearing peers (e.g., Qi & Mitchell, 2011; Wauters, van Bon, & Tellings, 2006). These delays culminate in deaf adolescents leaving school with reading comprehension levels equivalent to those of 9-year-old hearing children (e.g., Allen, 1986; Conrad, 1979; Qi & Mitchell, 2011).

Our aim in this article is to consider the deaf child’s reading comprehension profile in relation to another group of children who experience reading comprehension problems, that is, hearing children whose reading comprehension is unexpectedly poor, given their age-appropriate word-reading ability. To do this, we present a reanalysis of some existing reading comprehension data sets from deaf and hearing children. We use this comparison to provide insights into the reasons for deaf children’s literacy difficulties and the sources of support needed by deaf readers to achieve their full educational potential.

Deaf children exhibit reading problems across multiple aspects of reading, including word recognition, decoding, sentence-level processing, and text comprehension. The Simple View of Reading (Gough & Tunmer, 1986) provides a useful framework for considering the deaf reader’s profile in relation to other groups with reading difficulties.
According to this framework, reading comprehension is the product of word-decoding skills and listening comprehension. As a result, reading comprehension can fail because of poor word decoding, poor listening comprehension, or weaknesses in both components. Deaf children typically present with difficulties in both components of the reading process. As a result, their poor reading comprehension has often been ascribed to their word-reading difficulties. This is because children with slow, inaccurate, or inefficient word reading have fewer cognitive resources available to devote to the processing of the text for meaning (Perfetti, 1985).

The reading profile of children who are deaf can be contrasted with a group of hearing children often referred to as poor comprehenders. These are children who lag behind their typically developing peers in terms of reading comprehension skills (Cain & Oakhill, 2006). An important distinction between these two groups is that poor comprehenders usually have age-appropriate word-level reading skills and demonstrate specific delays at the text comprehension level whereas deaf children’s reading difficulties are not confined simply to reading comprehension. By matching groups of good and poor comprehenders for word-reading age, poor word reading has been ruled out as the source of poor comprehenders’ difficulties with the text (e.g., Cain & Oakhill, 1999; Cain, Oakhill, Barnes, & Bryant, 2001; Oakhill, 1984). In addition, children with unexpectedly poor reading comprehension have poor listening comprehension, a further indication that word-reading difficulties are not the source of their failure to fully comprehend what they read (Cain, Oakhill, & Bryant, 2000).

Although deaf children’s poor reading attainment is extremely well documented (e.g., Conrod, 1979; Kyle & Harris, 2010; Wauters et al., 2006), there is comparatively little research looking in detail at their text comprehension skills. Most of the large-scale surveys that have looked at reading comprehension as the outcome have tended to simply document attainment gaps rather than detail where specific difficulties lie (e.g., Allen, 1986; Conrad, 1979), and most of the small-scale experimental reading research has focused at the word level and on the role of phonological skills (e.g., Colin, Magnan, Ecalle, & Leybaert, 2007; Dyer, MacSweeney, Szczersinski, & Green, 2003). It is well known that deaf children have problems with fundamental skills that will affect word recognition, such as phonology and decoding (e.g., Kyle & Harris, 2006, 2011; Waters & Doehring, 1990), and also language skills that influence sentence comprehension, such as syntax and grammar (e.g., Bishop, 1983; Kelly, 1996; Lillo-Martin, Hanson, & Smith, 1991). As noted, because deaf children demonstrate poor word reading, it is plausible to expect that their reading comprehension skills will also be poor because they will devote their cognitive resources to word processing rather than the higher level integrative skills that aid reading for meaning (Perfetti, Stafura, & Adlof, 2013).

An interesting question is whether deaf children have reading comprehension skills that are appropriate for their word-reading level. The few studies that have included measures of both word reading and text comprehension have found, perhaps unsurprisingly, that the most severe reading delays are usually exhibited in reading comprehension (Harris & Moreno, 2006; Kyle & Harris, 2010). Several authors (e.g., Merrills, Underwood, & Wood, 1994; Vermeulen, van Bon, Schreuder, Knoors, & Snik, 2007; Wauters et al., 2006) argue that deaf children’s reading comprehension delays are not simply a consequence of their poor visual word recognition skills. For example, both Wauters et al. (2006) and Vermeulen et al. (2007) reported that visual word recognition scores (from lexical decision tasks) only accounted for between 32% and 52% of the variation in reading comprehension skills in deaf children with and without cochlear implants. However, it is important to note that visual word recognition skills and word-level reading ability are not the same thing. Therefore, investigating the role of visual word recognition in deaf children’s reading comprehension ability is different from
examining whether deaf children’s reading comprehension skills are appropriate for their word-reading level. To the best of our knowledge, no previous studies have addressed the explicit aim to answer this question in deaf children; that is, do deaf children have reading comprehension skills that are appropriate for their word-reading level? Furthermore, the huge heterogeneity in deaf children's reading and comprehension levels makes it difficult to know if their comprehension skills are especially delayed.

Successful reading comprehension results in a coherent and integrated representation of the state of affairs described in the text. Much of the information that a reader needs to understand a text is explicitly stated. Comprehension of this information requires the reader to access the word meanings and syntactic structure of the individual sentences but does not require additional processing. However, not all information is explicitly stated in the text, and, more often than not, the reader must be able to understand and make sense of information that is stated only implicitly. The process that enables this is inference making. There are different types of inferences that readers are required to make. Readers make inferences when they combine or integrate the meanings of different propositions in the text. Consider the following example: “Tom loved his new pet. The puppy was very playful.” (Inference: The new pet was the puppy). This type of inference is known as a local cohesion inference. Inferences can also require readers to bring their external knowledge (i.e., general knowledge and vocabulary knowledge) to understand fully the text, for example: “The children paddled in the warm water and built sandcastles. When the light started to fade, they packed up their things and went home.” (Inference: The setting of the story is the beach). This type of inference is known as a global coherence inference.

Studies of hearing poor comprehenders suggest that one of the main causes of their text-level reading difficulties are poor inference-making skills: They make fewer inferences than same-age good comprehenders matched for word-reading ability (Cain & Oakhill, 1999; Cain et al., 2001; Oakhill, 1984).

Research examining deaf children’s ability to make inferences when reading the text is fairly scarce, and it is even more limited concerning deaf children of primary school age. The handful of studies that have examined deaf individuals' inference-making skills have found that they tend to experience greater difficulties when processing inferential information than their hearing peers (Davey, LaSasso, and Macready, 1983; Doran & Anderson, 2003; Pinhas, 1991; Walker, Munro, & Rickards, 1998). The main areas of interest have been the comparison of deaf and hearing individuals and the processing of literal information contrasted with the processing of information that must be inferred. Doran and Anderson (2003) found that deaf adolescents could make causal inferences when reading passages for comprehension, but they were poorer than a group of hearing adolescents broadly matched for chronological age. Children were required to read a short passage and then asked a simple yes or no question to test their comprehension of the passage. Their accuracy and reading rate were virtually identical regardless of whether the information that the comprehension question was testing was stated explicitly or implicitly, therefore requiring an inference (79% vs. 80% correct). Unfortunately, interpretation of the results from this study is constrained by the small sample size (n = 20), the considerable age range of the deaf participants (12- to 18-year-olds), and the limited testing format.

Similarly, Davey et al. (1983) reported that deaf children aged 12 to 18 years made fewer correct inferences when reading passages for comprehension than a group of hearing children matched for approximate reading comprehension levels. The students were asked to read a series of passages and to answer four literal and four inferential questions about each passage. On the basis of the authors' description of the inferential questions, the questions required inferences to be made at the level of text cohesion. They were not designed to
assess world knowledge, the purpose, tone, or mood of the stories or the authors’ point of view, which would have required global coherence inference. It should be noted that, although the groups were matched for reading comprehension ability, the deaf participants were less accurate on both literal and inferential questions than the hearing.

In the largest study of inferential skills in deaf children to date, Walker et al. (1998) sampled 195 severely and profoundly deaf children aged between 9 and 19 years. They found that deaf children were more accurate on literal questions than on inferential questions; however, the extent of this discrepancy depended upon reading comprehension level. Poor readers struggled more with inferential questions, but there was no difference between performance on literal and inferential questions in deaf children with average or above-average reading skill. In contrast, Pinhas (1991) found that even relatively skilled deaf readers were slower and less accurate when answering inferential questions than answering literal questions about a text. However, although they were slower than reading-grade-matched hearing peers when answering inferential questions, the skilled deaf readers did not differ in accuracy. Unfortunately, the author did not provide information about the types of inferential questions that were asked, so it is not known if they required local cohesion inferences or global coherence inferences.

The evidence suggests that deaf children can draw inferences from the text but generally do so less efficiently than hearing children. However, because of the comparatively lenient matching methods, it is not clear whether their inference-making skills are necessarily poorer than would be expected for their reading level or whether their inference-making skills are in fact appropriate for their word-reading ability. The lack of studies with a primary school-age sample limits our understanding of inference making in that age group. More importantly, little is known about deaf children’s performance across different types of inference questions. We wanted to know whether deaf children would find particular types of inferences harder than others. More specifically, we asked, can deaf children make both local cohesion inferences at the text level and global coherence inferences requiring knowledge beyond the text? We hypothesized that, given deaf children’s well-documented language delays (e.g., Kyle & Harris, 2010; Musselman, 2000; Paul, 1996), their ability to make global coherence inferences and integrate world information with the information in the text might be particularly impaired compared with local cohesion inferences.

Unlike research with hearing children, where studies have carefully matched groups of children for word-reading or comprehension skills and examined their inference-making abilities, no equivalent studies have been conducted with deaf children. Research is needed for comparing the reading comprehension abilities and inference-making skills of deaf children with hearing children who have been stringently matched for chronological age, word-reading level, or reading comprehension. In the current study, we sought to close this gap by reanalyzing some existing data sets to investigate deaf children’s reading comprehension and inference-making skills.

The following research questions were addressed: (1) Are deaf children’s comprehensions skills consistent with their word-reading ability? (2) Can deaf children draw inferences from the text and do they show a similar profile to hearing children across different types of comprehension questions; specifically, do they have greater problems with global coherence inferences than with local cohesion inferences? and (3) Are deaf children’s reading comprehension profiles similar to profiles for hearing poor comprehenders?

METHODS

Participants

Forty-seven 10- and 11-year-old deaf children participated in the current study (mean age = 10 years 11 months, SD = 6.48; 25
They all had a severe or profound hearing loss greater than 85 dB in the better ear, and 15 of them were fitted with cochlear implants. The mean age of implantation was 42 months (SD = 15.1). The remaining 32 children wore digital hearing aids, and the mean age of amplification was 19 months (SD = 17.8). The children had a range of language backgrounds: 17 preferred to communicate through spoken language, 25 preferred to use sign language (British Sign Language [BSL] or Sign Supported English), and 5 used a combination of both. They were educated in 5 deaf schools and 11 hearing-impaired units attached to mainstream schools. The data for the deaf children came from studies reported by Kyle and Harris (2010), Kyle, Campbell, Mohammed, Coleman, and MacSweeney (2013), and Kyle, MacSweeney, Mohammed, and Campbell (2009).

The deaf children were matched to two groups of typically developing hearing children: (1) a chronological age-matched control group; and (2) a word-reading-age-matched control group. The chronological age-matched group consisted of nineteen 10- and 11-year-old children (mean age = 10 years 10 months, SD = 7.37; 7 boys). The word-reading-age-matched control group consisted of 47 typically developing children ranging in age from 5 to 11 years (mean age = 7 years 9 months, SD = 13.0; 18 boys). Children in the deaf and word-reading-age-matched (hearing) group were matched on a one-to-one basis for word-reading accuracy on the Neale Analysis of Reading II (NARA II; Neale, 1997), \(t(92) = -0.19, \) ns, \(d = 0.04. \) As expected, the deaf children were significantly older than this control group, \(t(92) = 18.23, p < .001, d = 3.76. \) The data for these two groups of typically developing hearing children were taken from studies reported by Cain and Oakhill (2006), Kyle et al. (2009), and Silva and Cain (in press) and who were represented in an unpublished data set.

Materials

All children had completed the NARA II (Neale, 1997). It is a standardized assessment of word-reading accuracy and reading comprehension. They read aloud a series of short story passages (up to six) of increasing difficulty and were asked to answer open-ended comprehension questions after each passage. The comprehension questions are a mixture of literal and inferential questions, including questions that require both local cohesion inferencing and global coherence inferencing. Children receive a separate score for reading accuracy (word reading) and reading comprehension. As detailed in the manual for the test, children were only asked the relevant comprehension questions if they made fewer than 15 errors while reading the passage.

Procedure

All children were individually tested in a quiet room at school. Ethical approval had been granted by the relevant university ethics committees, and parental permission was received for all participating children. The NARA II was administered according to the manual guidelines for the hearing children. The only modifications that were made...
for the deaf children were that instructions and comprehension questions were delivered in their preferred communication method, and they were allowed to read the stories and answer the comprehension questions in their preferred communication (e.g., spoken English, BSL, or a combination of the two). To generate a word-reading score, deaf children were asked to read aloud the stories in their preferred communication method, for example, read it aloud in spoken English, produce a translation of it in BSL, or use a combination of the two. Similarly, the test administrator asked the comprehension questions in the child’s preferred communication and if necessary translated the question into BSL and the child’s answer back into English. This is a well-established method of administering this type of test to deaf children.

We categorized the comprehension questions for the first three stories from the NARA II into three types: literal questions, and two subtypes of inferential questions—local cohesion and global coherence. There were 20 questions in total. Four questions were categorized as literal questions because they assessed memory for information that was explicitly stated in the text. Ten questions were categorized as local cohesion inferential questions because they required inferences to be made at the text level, either pronoun resolution for sentence integration or interpreting a synonym between the question and the text. The remaining six questions were categorized as global coherence inferential questions because they required inferences to be made at the text level, either pronoun resolution for sentence integration or interpreting a synonym between the question and the text. The authors plus an additional third rater independently categorized the questions into the three types and discussed any differences before agreeing on the final categorization. The initial agreement between the two authors was 0.80.

RESULTS

The results addressing the three research questions are presented, in turn, in the following text. The first asked about relationships of comprehension and word-reading ability; the second about similarities in profiles for different types of inferential questions; and the third about similarities between profiles for deaf children and hearing-poor comprehenders.

Question 1: Are deaf children’s comprehension skills consistent with their word-reading ability?

The means and standard deviations for the reading scores of the three groups are presented in Table 1. In comparison with the chronological age-matched hearing controls, the deaf children had significantly poorer word reading, \(t(63) = -12.01, p < .001, d = 3.27 \), and reading comprehension, \(t(63) = -13.19, p < .001, d = 3.59 \). As reported in the “Methods” section, the deaf children were matched to the other hearing control group for word-reading accuracy, so the two groups did not differ on that measure, \(t(52) = 0.42, ns, d = 0.09 \). However, when compared with this younger (hearing) group, a significant difference in reading comprehension was evident: The deaf children had significantly poorer reading comprehension than the word-reading-age-matched group, \(t(92) = -2.77, p = .007, d = 0.57 \). Clearly, the deaf children’s comprehension skills were not appropriate for either their chronological age or their level of word-reading skill.

Question 2: Can deaf children draw inferences from the text and do they show a similar profile to hearing children across different types of comprehension questions?

This second research question concerned deaf children’s comprehension profiles across the three different types of comprehension questions, with particular interest in the two types of inferential questions. We again compared the deaf children’s comprehension profiles with those of both chronological age- and word-reading-age-matched controls. However, this analysis was conducted with a smaller subset of children from each group who had each answered the
comprehension questions for the first three stories (deaf: n = 33; chronological age-matched controls: n = 19; reading-age-matched controls: n = 33). Children who had answered questions only for one or two of the passages were excluded from this analysis. In this way, we could compare comprehension performance across the same set of stories (see Cain et al., 2000, for a similar approach). The reading-age-matched controls and deaf children were again matched on a one-to-one basis.

The characteristics of this smaller sample of deaf children and the two controls groups and also the performance for each group are reported in Table 2. A two-way analysis of variance (ANOVA) comparing group and question type revealed a main effect of group, $F(2, 82) = 22.91, p < .001$. Each group differed significantly from each other (all $ps < .05$) in the following order: The chronological age-matched control group achieved the highest scores, followed by the reading-age-matched control group, and then the deaf children. There was also a main effect of question type, $F(1.8, 164) = 79.64, p < .001$ (the exact degrees of freedom are reported as sphericity was not assumed). This arose because children were most accurate on the literal questions and least accurate on the global coherence inference questions. There was no significant interaction between group and question type, $F(3.5, 164) = 2.14, ns$. The lack of an interaction demonstrates that all three groups showed a similar profile across the three different question types. Critically, the deaf

Table 1. Means and standard deviations for the reading scores for the initial three groups

<table>
<thead>
<tr>
<th></th>
<th>Deaf (n = 47)</th>
<th>Chronological Age-Matched (n = 19)</th>
<th>Word-Reading Age-Matched (n = 47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronological age</td>
<td>10;11 (6.48)</td>
<td>10;10 (7.37)</td>
<td>7;09 (13.0)</td>
</tr>
<tr>
<td>Word-reading age</td>
<td>7;11 (16.49)</td>
<td>11;11 (16.86)</td>
<td>7;11 (16.48)</td>
</tr>
<tr>
<td>Reading comprehension age</td>
<td>7;03 (14.71)</td>
<td>11;09 (15.26)</td>
<td>8;01 (19.67)</td>
</tr>
</tbody>
</table>

Means are in years;months and SDs are in months.

Table 2. Means and standard deviations for group characteristics and performance on different question types

<table>
<thead>
<tr>
<th></th>
<th>Deaf (n = 33)</th>
<th>Chronological Age-Matched (n = 19)</th>
<th>Word-Reading Age-Matched (n = 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronological age</td>
<td>10.10 (7.37)</td>
<td>10.00-11.08</td>
<td>8.02 (11.37)</td>
</tr>
<tr>
<td>Word-reading age</td>
<td>8.05 (15.06)</td>
<td>7.00-12.08</td>
<td>8.06 (15.01)</td>
</tr>
<tr>
<td>Comprehension age</td>
<td>7.08 (14.91)</td>
<td>6.04-12.11</td>
<td>8.08 (18.74)</td>
</tr>
<tr>
<td>Literal questions</td>
<td>78.0% (26.34)</td>
<td>0.0%-100.0%</td>
<td>96.1% (9.37)</td>
</tr>
<tr>
<td>Local cohesion inferences</td>
<td>67.6% (19.85)</td>
<td>20.0%-100.0%</td>
<td>92.1% (10.84)</td>
</tr>
<tr>
<td>Global coherence inferences</td>
<td>35.9% (22.10)</td>
<td>0.0%-100.0%</td>
<td>72.8% (20.19)</td>
</tr>
</tbody>
</table>

aMeans are in years;months and SDs are in months.
Reading Comprehension Profiles of Deaf and Hearing Children

151 children were able to make both local and global inferences, but they were significantly poorer at doing so than both chronological age- and word-reading-age-matched controls.

Question 3: Are deaf children’s reading comprehension profiles similar to hearing-poor comprehenders?

To address this third research question, a smaller subset of deaf children was compared with a group of hearing-poor comprehenders matched on reading comprehension level, t(52) = 0.42, ns, d = 0.09. Table 3 shows the means and standard deviations for the group characteristics and performance across the three question types.

A two-way ANOVA revealed a main effect of question type, F(2, 104) = 59.77, p < .001 ηp² = 0.53, whereby children in all three groups were more accurate on comprehension questions that required literal answers than on inferential questions and were also more accurate on inferential questions that required drawing local cohesion inferences than global coherence inferences. There was no main effect of group, F(1, 52) = 0.29, ns, ηp² = 0.01, and there was no significant interaction, F(2, 104) = 0.25, ns, ηp² = 0.01. Deaf children and hearing-poor comprehenders did not differ in their comprehension accuracy and showed an almost identical pattern of performance across the different comprehension question types.

Effects of background factors on reading comprehension in deaf children

The deaf children were a heterogeneous group in terms of their mode of amplification, degree of hearing loss, and preferred mode of communication. The data were examined to see what impact these factors had on their levels of reading comprehension. There was no significant difference in reading comprehension ability between deaf children with cochlear implants and those with digital hearing aids, t(17) = −1.62, ns. Likewise, there were no significant differences between deaf children with severe hearing losses and those with profound hearing losses, t(45) = 0.62, ns. There was a significant within-group difference between children in terms of their preferred communication mode; children who preferred to communicate through spoken language had higher reading comprehension scores, t(20) = 2.92, p = .009, than children who communicated through sign language or a combination of spoken and signed language. However, these results should be interpreted with caution because the subgroups were fairly unequal in numbers and the classification for the preferred mode of communication was rather rudimentary.

DISCUSSION

This secondary data analysis provided a unique opportunity to examine the reading

Table 3. Means and standard deviations for deaf children and hearing-poor comprehenders

<table>
<thead>
<tr>
<th></th>
<th>Deaf (n = 27)</th>
<th>Reading Comprehension-Age-Matched (n = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Min-Max</td>
</tr>
<tr>
<td>Chronological agea</td>
<td>10;10 (6.84)</td>
<td>10;00–11;09</td>
</tr>
<tr>
<td>Word-reading agea</td>
<td>8;02 (14.05)</td>
<td>7;00–12;08</td>
</tr>
<tr>
<td>Comprehension agea</td>
<td>7;03 (7.95)</td>
<td>6;04–9;01</td>
</tr>
<tr>
<td>Literal questions</td>
<td>74.1% (27.28)</td>
<td>0.0%–100.0%</td>
</tr>
<tr>
<td>Local cohesion inferences</td>
<td>63.3% (19.01)</td>
<td>20.0%–100.0%</td>
</tr>
<tr>
<td>Global coherence inferences</td>
<td>31.5% (19.25)</td>
<td>0.0%–66.7%</td>
</tr>
</tbody>
</table>

aMeans are in years;months and SDs are in months.
comprehension profiles and inference-making skills of deaf children. Critically, it enabled us to determine if the deaf children's comprehension and inference skills were weaker than would be expected, given their word-reading age. Unsurprisingly, the deaf children had weaker reading comprehension skills than hearing children matched for chronological age; however, they also were less accurate in answering comprehension questions than younger hearing children matched for word-reading ability. On the contrary, the deaf children's comprehension profiles were similar to those of a sample of hearing children with a poor comprehender profile. Taken together, these findings suggest that deaf children's poor reading comprehension is not in line with their word-reading accuracy and that their reading comprehension difficulties cannot simply be attributed to difficulties at the word-reading level. We discuss the theoretical implications of these findings first, followed by the educational implications.

An important contribution of this work is the finding that deaf children's poor reading comprehension is not wholly attributable to their weak word-reading skills. Poor reading comprehension in hearing children has been attributed to a lack of resources available for higher level comprehension processing caused by a bottleneck in the system due to poor word reading (Perfetti, 1985). That explanation was not supported by these results for the deaf children. Instead, our analysis indicates that deaf children are more likely to have both poor word reading and poor reading comprehension, which might be attributed to separate sources of underlying difficulty. This profile is in line with the simple view of reading, in which the independent influences of word reading and listening comprehension combine to determine reading comprehension (Gough, Hoover, & Peterson, 1996).

Our analysis of performance on the different question types provides a unique insight into the strengths and weaknesses of deaf children's comprehension. First, it is important to note that the deaf children performed more poorly on all question types: literal, local cohesion inferences, and global coherence inferences. The findings reveal that deaf children can make both local cohesion inferences and global coherence inferences when reading the text, but they are less efficient than hearing children matched for either chronological age or word-reading age. Deaf children's comprehension skills do not appear to be qualitatively different from that of hearing children: All three groups showed the same profile of performance across the different comprehension questions, with accuracy highest on the literal questions, followed by the local cohesion questions, and then the global coherence questions. These results fit in with previous findings from studies with deaf adolescents (Doran & Anderson, 2003; Pinhas, 1991; Walker et al., 1998). Our results extend findings to younger deaf children and across different types of inference-making skills. Furthermore, by careful pairwise matching of a deaf child with a hearing-poor comprehender, we were able to show that the deaf child's comprehension profile is almost identical to that of a poor comprehender.

Poor comprehenders' difficulties with inference making have been related to poor working memory (Cain, Oakhill, & Lemmon, 2004) rather than poor memory for the text (Cain & Oakhill, 1999; Oakhill, 1984), particularly when processing demands of the task are high (Cain et al., 2004). Deaf children typically have poorer short-term memory and working memory spans than their hearing peers (e.g., Campbell & Wright, 1990; Harris & Moreno, 2004). Specific working memory problems that have been identified include slower subvocal rehearsal and issues concerning the phonological loop (e.g., Burkholder & Pisoni, 2003; Pisoni & Cleary, 2003). Short-term memory and working memory skills have been found to be predictive of individual differences in reading ability in deaf children (e.g., Daneman, Nemeth, Stainton, & Huelsmann, 1995; Geers, 2003; Harris & Moreno, 2004), although it should be noted that stronger relationships tend to be reported in teenagers.
than in younger deaf children, as in the current study. Thus, further research is needed both to clarify the underlying mechanisms between working memory and reading comprehension in deaf children and to determine the possible impact of working memory on their inference-making skills.

Another factor that we need to consider is world knowledge (see Jackson, Paul, & Smith, 1997). Clearly, general knowledge, including critical vocabulary skills, is important for some types of inference, particularly the global coherence inferences in this study (Cain & Oakhill, in press). It is well established that many deaf children have severe language delays and indeed language delay has been described as a hallmark of deafness (see Musselman, 2000). Previous research has established that deaf children typically have poorer expressive and receptive vocabulary skills than their hearing peers (Geers & Moog, 1989; Kyle & Harris, 2006, 2011; and see Lederberg, Schick, & Spencer, 2013, for a review) and language skills, including vocabulary knowledge, are the strongest and most consistent predictors of reading ability in deaf children (Easterbrooks, Lederberg, Miller, Bergeron, & Connor, 2008; Hermans, Knoors, Ormel, & Verhoeven, 2008; Kyle & Harris, 2010, 2011). Moreover, language skills accounted for 35% of the variance in deaf reading ability in a recent meta-analysis (Mayberry, del Giudice, & Lieberman, 2011).

It is possible that deaf children’s poor language skills are an additional source of their inference-making difficulties, and, indeed, deaf children who exhibit a poor comprehender profile could in fact be those with weaker vocabulary and language skills. Unfortunately, we were not able to determine the effect of poor language skills in the current study because vocabulary data were not available for all the deaf children. As both working memory and language skills are known to affect typically developing hearing children’s reading comprehension abilities, and deaf children usually exhibit deficits in both these skills, future studies should investigate the impact of both weak memory and vocabulary on deaf children’s comprehension ability because these may identify interesting and important predictors of reading comprehension outcomes.

Our analysis demonstrates that not only do deaf children have weak word-reading skills but they also have weak reading comprehension. The pattern of performance was similar to that of the poor comprehenders; however, we note two critical differences between the two groups. First, the deaf readers were 2 years older than the reading comprehension-age-matched group. Second, in light of deaf children’s typically significant language delays, it is possible that the young reading comprehension-age-matched group actually had better language than the deaf children. Thus, it is not clear if the poor inference skills in each group arose for the same or different reasons (Cain et al., 2004; Nation & Snowling, 1999).

To take these ideas forward, we recommend the comparison of inference-making skills of deaf and hearing children matched for language ability to determine if the groups show same or different reading comprehension profiles. Matching deaf and hearing children on language ability would provide a means to investigate the effect of deaf children’s language delay upon their reading comprehension and particularly upon their inference-making skills. It is plausible that deaf children might show similar inference-making skills and reading comprehension levels to hearing children matched for language ability.

A limitation of this study is that we compared deaf and hearing children’s performance on a well-known test of reading comprehension rather than on a purpose-designed test. This meant that there were not equal numbers of the different question types because this was not a feature of that test. Despite this, the results are quite clear. They suggest that deaf children’s comprehension skills are delayed in comparison with their word-reading accuracy, and they are remarkably similar to poor comprehenders. At first glance, the finding that deaf children and poor
comprehenders were similar could be considered relatively unsurprising because these two groups were matched for comprehension levels. However, despite the two groups being matched for overall comprehension scores, it was possible that they could show a different profile across different question types and still achieve the same overall score. For example, because deaf children typically have language challenges, it was unknown whether they would be particularly impaired on the global coherence questions compared with the poor comprehenders. Further research with a specially controlled reading assessment, where the texts are written to support particular comprehension question types rather than categorizing the types, is needed to investigate this issue in more detail.

This focused on inferencing skills in deaf children, and although these are known to be very important for reading comprehension, they are not the only skills known to be impaired in children with poor reading comprehension. Future studies should investigate the role of story structure and text monitoring to uncover the role that these skills may play in deaf children's reading comprehension difficulties. Certainly, these other higher level language skills are weak in hearing-poor comprehenders (Cain, 1996; Cain & Oakhill, 2006; Oakhill, Hartt, & Samols, 2005).

Several educational implications stem directly from these findings. Teachers should be aware that the reading comprehension difficulties experienced by deaf children may not be always or wholly attributable to their word-reading difficulties; rather, our findings demonstrate that comprehension might be poorer than predicted from word-reading skills. A direct consequence of this finding is the need to examine both word reading and reading comprehension for stories that are within the child's word-reading ability to determine if this is the case. In addition, although our findings demonstrate that deaf children can draw inferences from the text, it should be noted that they were especially poor at integrating outside knowledge with information in the text. Deaf children are therefore likely to benefit from guidance when answering these particular types of questions to help them utilize more efficient comprehension strategies and encourage them to incorporate different sources of information.

In summary, we have shown that deaf children's reading comprehension is similar in profile to that of the well-documented difficulties of poor comprehenders. Critically, their reading comprehension is poorer than would be expected, given their word-reading level, and their inference making is weak. We note that these findings need to be replicated, in particular with bespoken materials constructed specifically to assess inference making. However, this study provides clear avenues for future research that we believe will lead to comprehensive support and interventions to aid deaf children.

REFERENCES

Reading Comprehension Profiles of Deaf and Hearing Children

Silva, M. T., & Cain, K. (in press). The relations between lower- and higher-level oral language skills and their role in prediction of early reading comprehension. *Journal of Educational Psychology*.

